
Grid-Interop Forum 2011

Next Generation Automation – Effective Platform Design and Practical

Implementation

Daniel Evans, Sam Hendley, Adam Crain, John S. Camilleri

NCSU Centennial Park Campus

Venture IV Building

1730 Varsity Drive, Suite 500

Raleigh, NC 27606

devans@greenenergycorp.com, shendley@greenenergycorp.com, acrain@greenenergycorp.com,

jcamilleri@greenenergycorp.com

Keywords: Automation, SOA, ESB, Messaging

Abstract

There are a number of challenges in meeting the defined

NIST architecture while driving interoperability.

Application modularity, integration with existing enterprise

data models, leveraging existing enterprise architecture

and supporting increasing volumes of diverse field data

(including meter data, phasor measurements, traditional

telemetry for operations, power quality and new remote

sensing devices) are among some of the key challenges

today.

This paper describes a service-oriented architecture for data

acquisition and control leveraging some of the latest

concepts in software engineering. By addressing the

business requirements to support role-based applications

and services, the platform removes the “islands of

automation” issue and allows a vertical decomposition of

the application stack to lower the barrier to entry for new

applications. The platform supports horizontal scalability for

performance and is distributed, by design, for reliability

and high availability. In addition, this paper addresses the

detailed design issues around support, performance,

reliability, security and scalability.

Finally, we will showcase a practical implementation of the

basic concepts of data acquisition and control while

leveraging an industry standard enterprise data model to

support interoperability between heterogeneous systems.

This platform design shows how today’s well defined

standards coupled with emerging standards can be leveraged

in a modular approach to minimize the customer’s risk and

reduce overall development support for vendors.

1. KEY CHALLENGES

The Electric Utility Industry is under an ever increasing

pressure to support the demands of the “Smart Grid”. The

challenge is complex due to the variety of systems and

business functions that exist today and those that are being

considered the smarter grid.

Some of these challenges are identified as the following:

 Bridging the operational technologies (OT) and

information technologies (IT) to support increasing

interoperability needs

 Avoid architecture brittleness

 Remove the island of automation

 Exponential growth in remote sensing data

 Manage the effects of a diminishing workforce

 Harmonization of enterprise data models

 Leveraging/Enhancing the legacy IT investment

The Guidelines for Smart Grid Cyber Security - NIST IR

7628 [1] help identify the overall number of systems,

interoperability and guidelines for cyber security

requirements. The main thrust of this paper is to describe an

open platform approach that addresses the challenges

identified above and leverages the NIST IR as a standard

reference model.

2. DESIGN PRICINPLES

In order to address the key challenges, the platform supports

the following design principles. With these principles in

place, barriers to innovation are removed.

mailto:devans@greenenergycorp.com
mailto:shendley@greenenergycorp.com
mailto:acrain@greenenergycorp.com
mailto:jcamilleri@greenenergycorp.com

Evans, Hendley, Crain, Camilleri

Grid-Interop Forum 2011

2.1. Open Platform

The concept of openness is typically focused on a specific

protocol, standard or programming interface rather than a

holistic view of a system. The word “open” has become a

marketing buzzword with no real meaning. Therefore it

requires a clear understanding of the platform lifecycle to

evaluate whether “open” in the context of the specific

system or platform really is a feature or red herring.

The main objective of an open platform is to foster adoption

by those entities that can support and employ the platform.

Adoption is encouraged by common standards that a

community agrees to use. There are numerous standards

that are currently being reviewed by the Smart Grid

Interoperability Panel. Many of these standards, like IEC

61850, DNP3, C22.12,are specific to the electric utility.

Other standard bodies like IETF, OASIS, and W3C support

a vast array of technologies in the software community. The

principle of this platform is to leverage information

technology standards across the software and industry

domains.

Figure 1: Publish/Subscribe Model

2.2. Open Source

The use of open source in commercial software is growing.

In many cases, the end customer does not even realize that

some of the code it is running is based on open source.

Many companies leverage stable open source projects to

support their product. Running stable projects [2] depends

on a complex set of community interactions and solid

software engineering lifecycle principles. Many of these

projects rival some of most complex propriety code bases in

the world due to the large number of developers and level of

complexity. One key use of open source in this platform is

to leverage hundreds of thousands of lines of code from

stable community projects addressing common issues.

Licensing options add to the complexity of open source.

The open source initiative [3] maintains a list of approved

licenses. Some licenses are incompatible with each other

and require users to package their solution differently or

abandon their use. The principle use of open source with

this platform is to allow community involvement across the

core platform components and support liberal licensing

policies for independent software vendors to use the

platform.

2.3. Cross Platform

In order to support a diverse set of applications, platforms

and human resource skill sets the platform should leverage

architectures and technologies that allow multiple

languages, operating systems, and client architectures. This

approach enables another opportunity for innovation by

increasing the tool sets and approaches of domain experts.

2.4. Service Oriented Architecture

A service oriented architecture (SOA) provides for modular

growth capabilities and is especially designed for

continuous integration support [4]. Figure 1 shows the

publish/subscribe model supported in this platform. The

SOA supports modularity and endpoint abstraction. The

message broker supports pub/sub and event driven systems.

Adherence to this type of architecture promotes composition

and reusability. Architecture brittleness is reduced and

nicely supports a dynamic business and technical

environment such as the evolution to a smarter grid. This

principle supports innovation, serviceability, continuous

integration.

3. DOMAIN TRIAD DESCRIPTION

In order to support continuous integration of business

objectives related to managing the electric power system,

providing value added solutions to the end customers, and

managing the rate of change on business requirements we

first have to identify the domain triad.

Figure 2: Domain Triad

For simplicity, we can identify three main domains of

systems, business processes and technologies for a Utility.

Evans, Hendley, Crain, Camilleri

Grid-Interop Forum 2011

 Back Office systems are dedicated to running the business

of the utility such as accounting, billing, and account

management. Front Office systems are customer facing

such as support and new services. Grid Operations refers to

the management of the power system. The conventional

domain model from SGIP contains seven domains, but for

simplicity the three mentioned above are sufficient for

discussions in this paper. Figure 2 shows a simple depiction

of the domain triad.

To build out a platform architecture that is open, leverages

best practices and solutions from other industries, and

supports a robust ecosystem of solution providers requires

basic architecture building blocks to interface across all

three domains. In this paper we will focus primarily on the

building blocks for the Grid Operations Domain.

4. ARCHITECTURE BUILDING BLOCKS

In many cases the IT Enterprise solves integration needs for

business systems using Enterprise Integration Patterns [4].

The common term for this type of integration architecture is

called an Enterprise Service Bus (ESB) [5]. An ESB

leverages service oriented architecture (SOA) [6] for

implementing the interaction and communication of services

and applications. The SOA design also supports distributed

computing and promotes an asynchronous message oriented

design.

The information technology fabric used to bridge the

domain triad is called a message oriented middleware. The

heart of the fabric is the Advanced Messaging Queuing

Protocol (AMQP) which is an open standard application

layer protocol.

4.1. AMQP

AMQP is the heart of the message-oriented middleware

platform that bridges the domain triad. AMQP provides

queuing, routing, message orientation, reliability and

security. The specification [7] calls out Ubiquity, Safety,

Fidelity, Applicability, Interoperability, and Manageability

as key requirement areas. The open standard originated in

the financial industry. Their objective was to address a

critical business need of providing high speed reliable

messaging with an open standard to avoid vendor-lock in.

This work started in the mid 2000’s and AMQP 1.0 is just

now being ratified under OASIS.

The requirements of AMQP from the financial industry are

applicable to the utility industry as well. The two major

requirement areas for supporting ubiquitous messaging

within the Grid Operations domain are performance and

security. AMQP addresses these requirements in an

abstract fashion. In a cited performance test, a commercial

implementation of AMQP achieved over 6 million

messages/sec on an 8-core box using Gigabit Ethernet [8].

 There are a number of other industries adopting AMQP as

the transport protocol for the same reasons required by the

Utility industry.

Brokers and clients communicate with each other by the

AMQP specification. Because the specification is open,

multiple vendor implementations can be deployed to work

together which gives the end customer true interoperability

and the ability to choose best-in-class client and broker

solutions avoiding vendor lock-in.

The function of the broker is to receive messages from the

clients and create routes, queues and generally manage all

incoming/outgoing messages of the system. Clients are

services and/or applications that use them.

4.2. Configuration

Brokers can be configured in clusters for High Availability

Messaging. Clients, also referred to as consumers and

producers, are really an extension of a simple client server

model. When a client publishes messages to the broker, the

broker, for instance, might configure an exchange with

topics for subscription by other clients. For this platform a

simple example is the collection of measurements from an

RTU in a substation where the client subscribes to all

measurement in that particular substation.

The deployment models of the brokers and clients are driven

by the requirements of the architecture. Clustering,

federation, message persistence (durability), and other

implementation can be tuned to support the deployment

architecture.

The configuration supports how the messages move

throughout the system, their availability, and reliability. The

payload of the messaging system for this type of system

requires a terse payload envelope to maintain high

performance. The payload schema in this platform

leverages protocol buffers developed by Google.

4.3. Protocol Buffers

Google protocol buffers are licensed under an Apache 2.0

license and have C++, .Net, Java and Python

implementations among others. Protocol buffers use a

schema that is compiled to multiple language bindings,

providing a simple, yet effective, interface. The lightweight

schema format loosely resembles structs in C.

Evans, Hendley, Crain, Camilleri

Grid-Interop Forum 2011

The following example shows how measurement quality is

encoded as a protocol buffer. In this case, the IEC 61850

definition is used. The reef project uses protocol buffers to

define service resources and the REST framework.

4.4. REST

Representational State Transfer (REST) is an architectural

style for distributed systems. REST is commonly thought of

as a "nouns and verbs" alternative to Remote Procedure Call

(RPC), but it is actually a proper subset of RPC that has

some interesting properties. Factoring a distributed system

in a RESTful style has the following advantages (which can

also be thought of as constraints) as applicable to the

discussed platform:

 Uniform interface - Service consumers/providers

communicate through a uniform interface (i.e.

GET, PUT, POST, DELETE) which decouples

client server development.

 Opaque transport - Clients are unaware of whether

they are directly connected to the end service or a

proxy. Proxies can be used for things like load

balancing or to enforce security.

 Stateless - Every request contains all of the

information necessary to satisfy the request. Any

server-side state must be addressable in some way.

5. CORE SERVICES

Within this platform there are a number of services. We

will focus a set of core services that support the automation

functions of the platform. Figure 3 shows the basic

services of Reef.

Figure 3: Basic Services of Reef

5.1. Measurements

Measurements are the basic units of data published by data

sources which are processed and monitored by the system.

Often, measurements are acquired using communications

protocols, and are used to represent the state of remote field

devices. Measurements may also be generated or manually

entered by agents. The basic fields provided by the

measurement service are Value, Quality, Time, and Unit.

Measurements enter the system either from communication

front-ends or directly using the Reef Project APIs. The

measurement stream is then processed -- configured

transformations are applied (scaling, value mapping) and

side-effects are triggered (event/alarm generation) . Finally,

measurements are stored in the database and published to

the bus. The system also maintains measurement history,

the chronological stream of previous measurement values.

5.2. Commands

Commands are the indications agents use to interact with

and modify the state of the system. Commonly, commands

are tunneled by the communications processors to remote

field devices in order to exercise control over their

functions. Whereas measurements constitute the flow of

// mirror the iec61850 quality (CIM uses these too)
message Quality {
 enum Validity {
 // No abnormal condition of the acquisition function or
 // the information source is detected
 GOOD = 0;

 // Abnormal condition ""
 INVALID = 1;

 // supervision function detects abnormal behavior,
 // however value could still be valid.
 // Up to client how to interpret.
 QUESTIONABLE = 2;
 }

 enum Source {
 // value is provided by an input function from
 // the process I/O or calculated by application
 PROCESS = 0;

 // value is provided by input on an operator
 // or by an automatic source
 SUBSTITUTED = 1;
 }

 optional Validity validity = 1 [default = GOOD];
 optional Source source = 2 [default = PROCESS];
 optional DetailQual detail_qual = 3;

 // classifies a value as a test value, not to be used for
operational purposes
 optional bool test = 4 [default = false];

 // further update of the value has been blocked by an
 // operator. if set, DetailQual::oldData should be set
 optional bool operator_blocked = 5 [default = false];

}

Evans, Hendley, Crain, Camilleri

Grid-Interop Forum 2011

data from the field, commands form the information moving

outwards.

Commands may or may not contain an associated value. In

the field communications world, commands with values are

usually referred to as setpoints, and may refer to a target

value the system or end device is intended to reach. Values

are therefore used when a simple imperative cannot convey

the proper message, such as "set temperature to 65 degrees

Celsius.”

When multiple agents/clients will be using the system

concurrently, simultaneously making modifications to the

same subsystems can lead to undesired results and

indeterminate behavior. Furthermore, it is frequently the

case that some field devices need to be declared "off limits"

for safety or maintenance reasons. The following objects are

used to regulate access to commands:

 Selects are acquired by clients to grant exclusive

access to a command or set of commands.

 Blocks are used to prevent any client from

accessing a command or set of commands.

The architecture allows for a unique opportunity to support

multiple clients in the grid operations domain. A real world

example would be clients like load shedding, remedial

action schemes, and switch order management applications.

In this case the architecture allows for each client to be from

different vendors since they are operating on the same

equipment and communication models of the platform.

They can subscribe to the measurement stream needed and

perform automatic /manual operations without concern of

indeterminate behaviors.

Another capability of this architecture is a term called

scatter-gather. This is an Enterprise Integration Pattern that

allows a client to broadcast many requests and receive an

aggregate message when all the recipients have responded.

A practical application is broadcasting a select command to

multiple switching devices and then waiting for the response

from all devices. The client does not need to manage this

but instead allows the platform to perform the work.

5.3. Events

Events are objects that record a meaningful occurrence or

change of state in the system. They are used both to monitor

the system in real-time and to provide an audit log of system

history.

Events are configured with the parameters type and severity,

and contain context information such as the originating

subsystem and associated agent. The "message" of the event

may contain a further description, and contain any relevant

data attributes.

Ultimately, the definition of events, as well as the

conditions under which they are triggered, is highly

configurable. Events, as a whole, are a tool system designers

use to characterize system behavior and to provide clients

and administrators necessary information.

Many or most commands issued by clients will qualify as

events. Other events may not be tied to operational data, but

instead will record system activity such as application errors

and agent authentication actions.

Figure 4: Alarm State Diagram

5.4. Alarms

Alarms are a refinement of events which identify system

occurrences that require operator intervention. Alarm

objects are tied closely to event objects. All alarms are

associated with events, but not all events cause alarms.

In contrast to events, alarms have persistent state. The three

principal alarm states are unacknowledged, acknowledged,

and removed. The transitions between these states constitute

the alarm lifecycle, and manipulation of the states involves

workflow. Transitions in alarm state may themselves be

events, as they are part of the record of client operations.

Evans, Hendley, Crain, Camilleri

Grid-Interop Forum 2011

6. PROJECT SERVICE LIST

Table I: Reef Project Service List

Name

AgentService.java

AlarmService.java

AllScadaService.java

ApplicationService.java

AuthTokenService.java

CommandService.java

CommunicationChannelService.java

ConfigFileService.java

EndpointManagementService.java

EntityService.java

EventConfigService.java

EventCreationService.java

EventService.java

MeasurementOverrideService.java

MeasurementService.java

PointService.java

Table I list the services in the Reef Project at

http://totalgrid.org. These services provide the automation

plumbing and core services.

7. SERVICE EVENTS & SUBSCRIPTIONS

In order to create a highly scalable system, the platform has

to be event driven. Clients can subscribe to various events

from services based on what information they require.

 Subscribing reduces the wasted conversation time and CPU

overhead of a reply/request method. The method used is

typically referred to as pub/sub.

Another aspect of this approach is that multiple clients can

subscribe to the same service topics (routing keys). For

example, a client could be any number of thick or thin

applications all subscribing to the same information.

This is an extremely powerful tool in the grid operation

domain to share automation data between many clients

within and across domains. With appropriate authentication

and authorization access to the automation data, non

operation personnel can access real time data for analysis

and planning.

8. MODELING

From an automation context, modeling refers to the act of

representing the power system data acquisition model.

Modeling of grid operations systems has always been a

complex design issue due to user experience (UX), data

federation, and integration of other sources of record

systems such as a Geographical Information System / Asset

Management System. The modeling system uses a color

directed graph to support relationships like “own”, “uses”,

“source” and many others. This approach is not specific to

the electric utility. With this approach the platform can

support modeling for water, gas, building, manufacturing,

electric automation system individually or combined. For

instance, a Municipal Utility may have operational support

for both the electric and water systems for their customer

base. Modeling for both systems can reside in the same

system while still supporting different operational business

units and processes. Another more interesting case is the

integrated utility services of a microgrid. The platform

allows simpler integration of applications that manage

multiple and interdependent services.

9. DEPLOYMENT CONTAINER

Another feature of the platform is the deployment container

based on a specification of the Open Services Gateway

Initiative (OSGi). The components of the Reef project are

deployed as bundles within this container. Figure 5 shows

the Reef Karaf shell.

Figure 5: Reef Karaf shell

The Karaf provides easy interface to load services, access

resources and overall management of the platform. This

technology supports the following key features:

 Cross platform support (Windows and Linux)

 Hot code swap support

 Command Line Interface (CLI) to service

interfaces

https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/AgentService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/AlarmService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/AllScadaService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/ApplicationService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/AuthTokenService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/CommandService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/CommunicationChannelService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/ConfigFileService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/EndpointManagementService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/EntityService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/EventConfigService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/EventCreationService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/EventService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/MeasurementOverrideService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/MeasurementService.java
https://github.com/gec/reef/blob/master/client/src/main/java/org/totalgrid/reef/client/rpc/PointService.java
http://totalgrid.org/

Evans, Hendley, Crain, Camilleri

Grid-Interop Forum 2011

The ability to load and unload bundles while the system is

running is a very powerful feature. A practical application

of this feature is the ability to patch a protocol bundle like

DNP3 without shutting down the system. Since the system

can be distributed to multiple nodes, the operational impact

of such an act can be limited.

Another feature that supports developers is the ability to

expose service interface through the karaf shell. Client

application can leverage the same interfaces; therefore the

developer can explore the interfaces through the CLI.

10. PERFORMANCE

Performance of the platform can be explained in terms IO,

CPU, and network bound. Persistence of time series data is

the typical performance bottleneck. This type of IO

constraint has been addressed by leveraging new

technologies like Cassandra, which is a highly scalableable

NOSQL solution.

CPU and Network performance bottlenecks are addressed

through horizontal scaling of commodity hardware. The

service oriented architecture allows the design of this type

of linear expansion.

11. SECURITY

For message oriented middleware, a fundamental security

requirement is to ensure safe messaging. The AMQP

specification calls out Simple Authentication and Security

Layer (SASL).

This method provides authentication support for the clients.

There are optional authentication methods and capabilities

to negotiate protection on other protocol interactions.

The underpinnings Role Based access is support for

multiple users with course permission sets to service

resources and/or the entity model. Granular permission will

be supported in future releases.

12. OPEN SOURCE MATRIX

All of the software components discussed in this paper are

licensed under various open source licenses. The following

table is a partial list of the main components.

 Table II: Platform Open License List

Component License Description

Reef Core AGPL http://reef.totalgrid.org

Reef API Apache 2.0 http://reef.totalgrid.org

DNP3 Apache 2.0 http://dnp3.totalgrid.org

Cassandra Apache 2.0 http://cassandra.apache.org

Postgreql GPL www.postgresql.org

qpid Apache 2.0 qpid.apache.org

Spring www.springsource.org

Protocol

Buffers

Apache 2.0 Google Protocol Buffers

13. IMPLEMENTATION

The following are various implementations of the reef

project.

13.1. FREEDM Lab - MicroGrid Implementation

The NSCU FREEDM Lab (http://www.freedm.ncsu.edu/)

uses the Reef platform to preform data acquisition to various

components in the microgrid. The figure below represents a

conceptual model of the microgrid. DNP3 is used to

communicate to the field devices. This is an NSF funded

site that supports research in solid state devices to control

the flow of power. The platform allows new applications

development and leverages a real time HMI to manage the

network. The configuration of the platform is a single node

running on Ubuntu 10.4 LTS. The model is less than 100

measurements, but supports a number of control options and

can be configured to support the new solid state devices.

Figure 6: FREEDM Microgrid

13.2. EV Charging Station

The figure below shows the automation platform Reef with

a special type of protocol connected to the frontend

processor (FEP) of Reef. The protocol bundle provides the

mapping and the specific charging station protocol. A state

machine is used as a poller. The Spring Web Service

provides the interface to the charging station web service

headend. Within the karaf shell the protocol and spring are

bundled to provide a deployable package. The

Configuration file is a general XML modeling file for the

system. It provides the modeling parameters for the FEP

and protocol bundle. This implementation provides demand

information and is processed by the platform so applications

on the platform can monitor and control the charging

station. Technologies like SOAP, WS-Security and HTTPS

are used to leverage a standard reusable approach and a

authenticated connection.

http://reef.totalgrid.org/
http://reef.totalgrid.org/
http://dnp3.totalgrid.org/
http://cassandra.apache.org/
http://www.postgresql.org/
http://qpid.apache.org/
http://www.springsource.org/
http://www.freedm.ncsu.edu/

Evans, Hendley, Crain, Camilleri

Grid-Interop Forum 2011

Figure 7: Charging Station FEP

13.3. Grid Operation / Back Office Integration

Another integration problem is providing back office

integration with an outage management system (OMS) and

the Reef platform. In this configuration the web service

stack can use approaches like a JMS connector to

communicate with the platform and subscribe to breaker

status changes to support the OMS fault location algorithms.

The data model used is the point-to-point standard is

MultiSpeak®. The platform provides a number of

advantages over a straight application to application

connection.

First, the integration of the MultiSpeak® client does not

impact the operation of the Reef platform. Therefore, the

client can be modified and / or patched without any direct

impact on the platform’s ability to communicate with field

devices. Second, the integration cost of standing up another

version of the same interface is minimized to just days of

integration and testing. Finally, configuration issues are

focused on the client and not the platform.

14. CONCLUSION

The discussed message oriented middleware automation

platform leverages a next generation messaging protocol

and diverse IT technologies to support ubiquitous

messaging across multiple domains. The platform is based

on open source components to drive innovation and provide

a path for industry adoption. The purpose built services and

messaging infrastructure also provide a reliable and

preformat platform to enable utilities to build out a non-

brittle IT infrastructure for the realization of a smarter grid.

Evans, Hendley, Crain, Camilleri

Grid-Interop Forum 2011

15. REFERENCES

[1] NISTIR-7628 Vol 1. -

http://csrc.nist.gov/publications/nistir/ir7628/nistir-

7628_vol1.pdf

 [2] Chris DiBona, Danese Cooper, Mark Stone, Open

Sources 2.0: The Continuing Evolution, O’Reilly, ISBN: 0-

596-00802-3, 2006.

[3] OSI - http://www.opensource.org/licenses

[4] Gregor Hohpe, Bobby Woolf, Enterprise Integration

Patterns, Designing, Building and Deploying Messaging

Solutions, Addison-Wesley, 2004.

[5] David A. Chappell, Theory in Practice Enterprise

Service Bus, O’Reilly Media, 2004.

[6] Thomas Erl, Service-Oriented Architecture Concepts,

Technology, and Design, Printice Hall, ISBN-10 0-13-

185858-0, 2005.

[7] AMQP Specification V1.0, Revision:1350, 07 Oct 2011.

http://svn.amqp.org/svn/amqp/trunk

[8] http://www.redhat.com/mrg/messaging/features/#aio

16. BIOGRAPHY

Mr. Evans is a Software Engineer working on Green

Energy Corp’s Green Bus Platform and open source

initiatives. Mr. Evans holds a Bachelor of Science in

Computer Science from the University of North Carolina-

Chapel Hill. Since 2006, Mr. Evans has worked on a variety

of efforts as part of Green Energy’s work in power systems

automation. His domain experience includes software

support for substation integration, the development of

“smart grid” load reduction automation for a major utility,

and the development and open-source release of the

industry-standard DNP3 protocol. He has been responsible

for quickly prototyping proof of concepts for thin-client

SCADA interfaces, rich internet application-based operator

HMIs, and distributed field device communications using

low-power digital radios. Mr. Evans is currently developing

core applications and services as part of the Green Bus

Platform team.

Mr. Hendley is a development lead within the Production

Development group of Green Energy Corp. He holds a

Bachelor of Science in Physics from the University of North

Carolina-Chapel Hill. Mr. Hendley worked on a number of

games and products and built an extensive framework for

porting games to a range of phone hardware increasing the

team productivity. Mr. Hendley also made contributions to

a number of open source projects necessary to use testing

and coverage tools on the RIM Blackberry device. Since

Mid 2006 Mr. Hendley has been a software developer at

GEC. Mr.Hendley has worked on many projects including

“Advanced Applications” built on top of a large utility

EMS, a custom control system for a sun tracking solar

collector, a web-based HMI system for a renewable energy

plant and a number of communication protocol stacks.

Mr. Crain leads the GreenBus platform development and

open source efforts. His experience in the power industry

includes SCADA systems, substation automation, control

centers, field devices, protocol stacks, and concentrating

photovoltatic systems. He is the principal author of Green

Energy Corp's first open source release, DNP3, a high

performance implementation of Distributed Network

Protocol. Mr. Crain was the principal software engineer

behind Skynet, a control system for arrays of robotic

telescopes. Skynet (http://skynet.unc.edu) is now an

integrated part of the high school and college curriculum in

North Carolina. Mr. Crain holds a BS in Physics and

Computer Science from the University of North Carolina at

Chapel Hill.

Mr. Camilleri is the EVP of Product Development and

Chief Product Owner of GreenBus at Green Energy Corp.

He has worked as a distribution and transmission engineer

for PECO Energy. During his time with ALSTOM-GRID

Mr. Camilleri integrated SCADA/EMS/DMS systems to

numerous utilities. Later he served in the Operations and

R&D divisions providing leadership to the engineering and

product development organizations as well as working

closely with utility customers. For Microsoft, Mr. Camilleri

managed developments of security features and operating

system security architecture for several windows mobile

product lines. Mr. Camilleri holds both a BS and MS in

Electrical Engineering from Tennessee Technological

University and is a Senior Member of IEEE.

http://csrc.nist.gov/publications/nistir/ir7628/nistir-7628_vol1.pdf
http://csrc.nist.gov/publications/nistir/ir7628/nistir-7628_vol1.pdf
http://www.opensource.org/licenses
http://svn.amqp.org/svn/amqp/trunk
http://www.redhat.com/mrg/messaging/features/#aio

